ブロックチェーン(blockchain)とは何か?仕組みや特長をわかりやすく解説!

ブロックチェーンとは、分散型台帳とも呼ばれる新しいデータベースです。P2P通信やHash関数などの暗号技術を組み合わせることで、取引データ等の情報を改ざん・喪失のリスクから守りながら複数のコンピュータに同期できることが特長です。

過去5年間で市場を急拡大させた後、現在は、セキュリティ上の課題を抱えつつも、金融・非金融を問わず、あらゆる産業での応用、ビジネス活用が進んでいます。ブロックチェーン 技術は、IoTやAIと補完しながら、今後どこに向かうのか?徹底解説します。

  1. ブロックチェーンとは?
  2. ブロックチェーンの仕組み
  3. ブロックチェーンの種類
  4. ブロックチェーンの市場規模
  5. ブロックチェーン技術の応用事例
  6. ブロックチェーンのビジネス活用
  7. ブロックチェーンの今後(AIとIoT)
  8. ブロックチェーンの課題
  9. まとめ

ブロックチェーンとは?

ブロックチェーンは新しいデータベース(分散型台帳)

ブロックチェーンは、2008年にサトシ・ナカモトと呼ばれる謎の人物によって提唱された「Bitcoin」(暗号資産システム)の中核技術として誕生しました。

Bitcoinには、P2P(Peer to Peer)通信、Hash関数、公開鍵暗号方式など新旧様々な技術が利用されており、それらを繋ぐプラットフォームとしての役割を果たしているのがブロックチェーンです。

ブロックチェーンの定義には様々なものがありますが、噛み砕いていうと「取引データを暗号技術によってブロックという単位でまとめ、それらを1本の鎖のようにつなげることで正確な取引履歴を維持しようとする技術のこと」です。

取引データを集積・保管し、必要に応じて取り出せるようなシステムのことを一般に「データベース」と言いますが、ブロックチェーンはデータベースの一種であり、その中でも特に、データ管理手法に関する新しい形式やルールをもった技術です。

分散型台帳」とも訳されるブロックチェーンは、中央管理を前提としている従来のデータベースとは異なり、常にネットワークの参加者間で情報が同期されています。データとトランザクション(取引)が多数のノードに分散して保存されるため、一つのノードや場所に依存することなくシステムが機能します。

このように中央的な管理者を介在せずに、データが共有できるので参加者の立場がフラット(=非中央集権)であるため、「分散型台帳」と呼ばれています。

ブロックチェーンは従来のデータベースと何が違うの?

分散台帳とは.jpg

ブロックチェーンと従来のデータベースの主な違いは次の通りです。

従来のデータベースの特徴ブロックチェーンの特徴
構造 各主体がバラバラな構造のDBを持つ各主体が共通の構造のデータを参照する
DB  それぞれのDBは独立して存在し、管理会社によって信頼性が担保されているそれぞれのストレージは物理的に独立だが、Peer to Peerネットワークを介して同期されている
データ共有相互のデータを参照するには新規開発が必要共通のデータを分散して持つので、相互のデータを参照するのに新規開発は不要

こうしたブロックチェーンの「非中央集権性」によって、「データの耐改ざん性」「安価なシステム利用コスト」「ビザンチン耐性(欠陥のあるコンピュータがネットワーク上に一定数存在していてもシステム全体が正常に動き続ける)」といったメリットが実現しています。

データの安全性や安価なコストは、様々な分野でブロックチェーンが注目・活用されている理由だといえるでしょう。

ブロックチェーンの仕組み

ブロックチェーンの基礎構造

ブロックチェーンは、その名の通り「ブロック」を「チェーン」のように順番に繋いだ形をしています(下図)。

「ブロック」とは、1MB分の「Tx(Transaction、トランザクション)」、つまり一定量に取りまとめられた取引データに、日付などのメタ情報を付与したものです。

身近なものに例えるなら、ブロックは引き出しがいくつか付いているタンスのようなものだと言えます。

一つのタンスの中には複数の同じ大きさの引き出しがあり、その中にはさらに、例えば紙の契約書だとか現金が入っている、というようなイメージです(下図)。

(出典:「かわいいフリー素材集いらすとや」画像より作成)

タンスの中に契約書や現金をしまいこんだら、次に考えるべきことは、「どこに何があるかを正しく把握」して「泥棒に盗まれないようにしっかりと鍵をかけておく」ことでしょう。

これらの機能を果たしているのが、「チェーン」と例えられる、ブロックチェーンの記録・保管形式です。

具体的にいうと、各ブロックには、日付(タイムスタンプ)に加えて、「Hash(ハッシュ、ハッシュ値)」「nonce(ナンス)」「ターゲット」と呼ばれるメタ情報が付与されており、これらの情報をもとにして、ある一定のルールのもとで前のブロックと後ろのブロックがまるで鎖のように連結されています

これらをタンスの例で言えば、1番目のタンスの鍵を2番目のタンスの中に入れて、2番目のタンスの鍵を3番目のタンスの中に入れて・・・としているイメージです。

さらに、より細かく見れば、「公開鍵暗号方式」と呼ばれる方法によって、引き出しごと(つまりトランザクションごと)にも個別に鍵がかけられています。

(出典:「かわいいフリー素材集いらすとや」画像より作成)

公開鍵暗号方式とは、「暗号化と復号(暗号から元のデータに戻すこと)に別個の鍵(手順)を用い、暗号化の鍵を公開できるようにした暗号方式」のことです。

ブロックチェーンでは、トランザクションデータの流出等のリスクを減らすために、取引データをトランザクション化する際に、この公開鍵暗号方式が利用されています。

出典:Udemyメディア

チェーン構造に加えて、この公開鍵暗号方式を採用していることで、ブロックチェーンのセキュリティは非常に堅牢だと言えるでしょう。

こうしたブロックチェーンの基礎構造は、Bitcoin以降のブロックチェーンのほぼ全てに採用されています。

コンセンサスアルゴリズム

ブロックチェーンネットワークでは、世界中に散らばるノード(=ネットワーク参加者)によって新しくつくられたブロックが、ノード間で伝播することにより、リアルタイムでのデータ同時共有が実現されています。

ノードは、「コンセンサスアルゴリズム」と呼ばれる合意形成のルールに基づいて、特定の条件を満たすことでブロックを生成することができます。

コンセンサスアルゴリズムとは、中央管理者が不在であるブロックチェーンにおいて「どのデータが正しいか?」を決めるための、不特定多数のノードによる合意方法のことです。

なんだか定義だけでは理解しづらい概念ですよね。ではこれを理解するために、友人たちとピザのトッピングを決める場面を想像してみましょう。

あなたと友人2人がピザを注文することになりました。あなたは「アメリカン」、友人Aも「アメリカン」、友人Bは「イタリアン」を選んだとしましょう。あなたはこんなとき、どうやって意見をまとめますか?最も一般的な方法は、多数決でしょうか。その場合、「アメリカン」が2票で最多なので、ピザのトッピングは「アメリカン」に決まります。この意見をまとめる方法、ここでは「多数決」がコンセンサスアルゴリズムにあたります。

これをブロックチェーンの文脈に置き換えてみましょう。ブロックチェーン上のノードは、取引内容や新しいブロックを承認する際にコンセンサスアルゴリズムを用いて合意を形成します。ハッカーや不正行為からコミュニティを守るため、あるいは分散的な組織運営をするために、多数決だけではなく、Proof of Work(PoW)Proof of Stake(PoS)といったさまざまなアルゴリズムを開発しています。

Proof of Work(PoW)は、膨大な計算処理によって解答を見つけることが必要なアルゴリズムです。みんなで難しいクイズを解いて、最初の正解者が食べたいピザを選ぶイメージです。最初に正解を導き出したノードが次のブロックを承認し、他のノードもそれを確認して合意が形成されます。かの有名なBitcoin(ビットコイン)はこのアルゴリズムを採用しています。

少し具体的に見てみましょう。PoWでは、ブロックの生成過程で、「マイニング」と呼ばれる、ブロックのメタ情報(「Hash」「nonce」「Target」)を用いた計算作業をノードに課しています。

平たく言えば「ある条件を満たす数字を見つけましょう」という計算ですが、この問題を解くためには莫大なコンピュータの電気代がかかるため、簡単にはブロックをつくることはできません。

とはいえ、ビットコインでは、ブロックを無事に生成できると報酬として仮想通貨を手に入れることができるため、多くの人がブロックづくりに挑戦し、同時に複数のブロックが生まれてしまうこともあります(「フォーク」と呼ばれる事態)。

そこで、2点目として、PoWでは、複数のブロックが生まれた場合は、「最も長いチェーンに含まれるブロックが正しい」という基本原理を採用しています(ナカモト・コンセンサス)。

このように、ブロックチェーンでは独特かつやや複雑な仕組みによってブロックが生成されています。

一方、Proof of Stake(PoS)は、ノードが所有する仮想通貨の量に応じて承認権を与えるアルゴリズムです。友達がピザを注文する際、いちばん多くお金を出した人の意見を重視するような仕組みです。Ethereum(イーサリアム)やSolana(ソラナ)といった有名なブロックチェーンで採用されています。

ほかにもProof of Importance(PoI)Proof of Consensus(PoC)といった様々なコンセンサスアルゴリズムが存在します。コンセンサスアルゴリズムは異なるノード間で合意を形成し、正しい情報を保持するための鍵となる重要な要素です。そのため、それぞれの弱点や課題を補うようにして新たなコンセンサスアルゴリズムが誕生しており、その進化は今後も続いていくでしょう。

P2P(Peer to Peer)通信

ブロックチェーンに利用されている最も代表的な関連技術が「P2P(Peer to Peer、ピアツーピア)通信」です。

P2Pとは、パーソナルコンピューターなどの情報媒体間で直接データの送受信をする通信方式のことで、従来のデータベースの「クライアントーサーバ型」と対比されます。

出典:平和テクノシステム

クライアントーサーバ型では、情報媒体間でデータの送受信を行う際に、データ共有を行う媒体間で直接通信せず、第三者媒体をサーバとして経由するため、どうしても中央管理者の存在が不可欠でした(Google ChromeやAWSをイメージするとわかりやすいでしょう)。

これに対して、P2Pでは、媒体間で直接やり取りを行うために、第三者のサーバを必要としません。

したがって、ブロックチェーンの最大の特徴でもある「非中央集権性」は、まさにこのP2Pによってもたらされたものと言えます。

実際に、P2Pは第三者を介さない個人間での送金手続きや小売電気事業者を通さない個人間での電力取引、無料インターネット電話サービスの先駆けともいえるSkypeなどに用いられています。

Hash(ハッシュ値、ハッシュ関数)

ブロックチェーンの各ブロックには、データの耐改ざん性を高めるために、「Hash値」と呼ばれる値がメタ情報として埋め込まれています。

Hash値は、「Hash関数」と呼ばれる特殊な暗号化技術を通して作られます。

ブロックチェーンでは、一つ前のブロックをHash化したHash値を次のブロックに渡し、それを織り込んでブロックを作成します。

Hashは少しでも入力値が変わると異なるハッシュ値が生成されます。したがって、ブロック内のデータが改ざんされると、そのブロックのハッシュ値も変わり、他のノードとの不一致が検出されます。これにより、改ざんや不正アクセスが防止されます。

また、Hashはデータの内容に関わらず一定の長さで生成されます。この特徴によって、大量のデータを効率的に比較・検証することが可能です。

さらに、元のデータからHashを逆算することは非常に困難です。そのため、Hashを用いることで、個人情報や機密データを扱うことができます。

このようにHashはブロックチェーン技術の中で重要な役割を果たしており、データの信頼性とセキュリティを確保するために欠かせない要素です。

ブロックチェーンの種類

ブロックチェーンの分類方法

ブロックチェーンは大別すると、パブリック型コンソーシアム型/プライベート型の2種類に分けることができます。

ノードの参加者が限定されていないか、限定されているかが大きな論点です。

パブリック型ブロックチェーンは、不特定の参加者により運営され、管理者が不在であるという特徴を持ちます。また、パブリック型の場合は、誰もがブロックチェーンのマイニングを行うマイナーとなれます。

他方、コンソーシアム型/ライベート型ブロックチェーンでは、参加者は一部の企業等に限定され、また、コンセンサスアルゴリズムによって許可された管理者がネットワークの管理にあたります。また、この形式下では管理者の許可を受けたものだけがマイナーとなれます。

このようにコンソーシアム/プライベート型のチェーンは、分散化という観点では、ブロックチェーンを使う意義が薄く、ややメリットに欠けるでしょう。しかし、ノードの参加者が限定されているため、企業向けのエンタープライズ用途に好まれています。

また、ブロックチェーンの分類には、パーミッションド型/パーミッションレス型の区別もあります。これは、取引を承認する参加者の身元が明らかにされるなどして、ノードとして参加するのに許可(=permission)が必要か否かで分類を行ったものです。

そのため基本的には「パブリック型=パーミッションレス型」という認識で良いでしょう。

開発基盤としてのブロックチェーンプラットフォーム

ブロックチェーンを活用したプロダクト・サービスの開発には、開発の実装基盤となるプラットフォームが不可欠です。ブロックチェーンのプラットフォームには、用途に合わせて数多くの種類があります。

代表的なブロックチェーンプラットフォームは、次の通りです。

プラットフォーム名対象用途例
Ethereum(イーサリアム)エンタープライズ向け(toC企業)NFTなど
BSC(バイナンス・スマート・チェーン)エンタープライズ向け(toC企業)DApps、NFTなど
Polygon(ポリゴン)エンタープライズ向け(toC企業)NFT、DAppsなど
Symbol(シンボル)エンタープライズ向け(toC企業)ゲーム、DAppsなど
SOLANA(ソラナ)エンタープライズ向け(toC企業)ゲームなど
Ripple(リップル)エンタープライズ向け(銀行)銀行間送金(特化)
Corda(コルダ)エンタープライズ向け(toB企業)銀行間送金、企業間プラットフォームなど
GoQuorum(ゴークオラム /ゴークォーラム)エンタープライズ向け(toB企業)企業間プラットフォームなど
Hyperledger Fabric(ハイパーレジャーファブリック)エンタープライズ向け(toB企業)企業間プラットフォームなど
Bitcoin Core(ビットコインコア)個人向け個人間送金

上表のように、10種類のプラットフォームを用途の観点から分類すると、大きく次の4つに分けることができます。

1 toC企業向け:ゲームなどの開発に向いている

2 toB企業向け:業界プラットフォームなどの開発に向いている

3 銀行向け:銀行間送金に特化している

4 個人向け:ちょっとした送金の手段として使われる

自身が推進するプロジェクトに向いているプラットフォームを把握し、その特性を理解しておくことは、開発者だけではなくビジネスサイドの担当者にとっても有益です。詳しくは、以下の記事で解説しています。

ブロックチェーンの市場規模

経済産業省が「ブロックチェーンは将来的に国内67兆円の市場に影響を与える」との予測を発表してから8年が経過しました。

同予測によると、具体的には、大きく次の5つのテーマで、社会変革・ビジネスへの応用が進むとされています。

1 価値の流通・ポイント化・プラットフォームのインフラ化

2 権利証明行為の非中央集権化の実現

3 遊休資産ゼロ・高効率シェアリングの実現

4 オープン・高効率・高信頼なサプライチェーンの実現

5 プロセス・取引の全自動化・効率化の実現

出展:平成27年度 我が国経済社会の 情報化・サービス化に係る基盤整備 (ブロックチェーン技術を利⽤したサービスに 関する国内外動向調査) 報告書概要資料

事実、この数年間で、1はSTOなどのトークン活用、2は不動産領域における登記などの権利証明、3は医療プラットフォームや電子政府、4は国際海運における物流プラットフォーム、5はDEXに代表されるDAO(自律分散型組織)、といった具合に、既存の産業をDX(デジタルトランスフォーメーション)する形での市場拡大が進んできました。

その結果、ブロックチェーン技術の国内市場規模は2025年に1000億円を超え、関連市場を合わせると67兆円の潜在規模があるとされています。また、世界市場規模は2023年の175億7000万ドルから2030年までに4694億9000万ドルに成長すると予測されています。

さらに、世界経済フォーラムによると、2025年までに世界のGDP総額の10%がブロックチェーン基盤上に乗るとされており、今後のさらなる技術発展とマーケット拡大、そして私たちの生活への浸透が期待されます。

ブロックチェーン技術の応用事例

2023年現在、ブロックチェーン技術で最も頻繁に応用されているのが、次の2つです。

  • NFT
  • スマートコントラクト

NFT

出典:Pexels

NFTという言葉は「Non-Fungible Token」の略で、日本語にすると「非代替性トークン」となります。非代替性は「唯一無二・替えが効かない」ことを意味し、トークンには「データや通貨・モノ・証明」という意味があります。

つまり、NFTとは簡潔に言うと個別の価値を持ったデジタルコンテンツのことです。

NFTではこのようなブロックチェーンが持つ高いセキュリティ性能を利用して、web上のデータが本物なのか偽物なのかを誰でも判別することを可能にし、データの希少性を担保できます。ブロックチェーンの活用によって、これまではできなかったデジタル作品の楽しみ方やビジネスが生まれているというわけです。

たとえば、あるアーティストが作ったデジタルアートやミュージシャンが制作した音楽がNFTとして発行されると、それぞれがユニークな価値を持ちます。ファンやコレクターは「本物」という箔のついたコンテンツを所有・売買でき、アーティストやクリエイターはデジタルコンテンツ特有の偽造問題や無断利用といったリスクから自身の作品の所有権を守ることができます。

このようにNFTは、コレクションやデジタルコンテンツの商業活用など、新たな可能性を開拓することができる革新的な仕組みとして注目されています。

スマートコントラクト

出典:Pexels

スマートコントラクトとは、ブロックチェーンシステム上で規定のルールに従い、トランザクションや外部情報をトリガーに実行されるプログラムあるいはコンピュータプロトコルのことです。

1994年にNick Szabo(ニック・スザボ)という法学者・暗号学者によって提唱され、エンジニアのVitalik Buterin(ヴィタリック・ブテリン)がEthereum基盤上で開発・提供し始めました。

「契約(コントラクト)の自動化」を意味するスマートコントラクトは、事前定義から決済に至るまで、一連の契約のスムーズな検証、執行、実行、交渉を狙いとしています。

自動販売機にも例えられるスマートコントラクトの技術を用いることで、「プロセス・取引の全自動化・効率化」を実現し、世の中の不便や非効率を無くしていくためのブロックチェーンの思想を社会実装していくことが期待されており、例えば、DEX(分散型取引所)や投票システムなどに利用されています。

ブロックチェーンのビジネス活用

分散型台帳、トークン、スマートコントラクトといったブロックチェーンの諸側面は、実際のビジネス課題に合わせた様々なソリューションとして社会実装されています。

ビジネスソリューションとしてのブロックチェーンは、金融/非金融/ハイブリッドの3領域に分けて考えることで、事業化に取り組みやすくなります。

第一の領域である金融領域は、暗号資産(仮想通貨)の利活用を目的としたビジネス領域です。

BTC(ビットコイン)やETH(イーサ)を始めとした暗号資産の取引市場や、ICOやSTOといった暗号資産やトークンを利用した派生市場での活用が行われています。

出典:pixabay

第二の領域である非金融領域は、暗号資産(仮想通貨)を使わない領域のことです。

台帳共有や真贋証明、窓口業務の自動化など、既存産業のDX(デジタルトランスフォーメーション)の文脈で、今、最も注目を集めている領域と言えるでしょう。

この領域の活用事例は、次のように多岐に渡っています。

  • 自律分散型図書館DAOLIB構想
  • 職歴証明のWorkday Credentials
  • 医療用品の寄付の追跡ポータル
  • Socios.com(サッカーファントークン)
  • 医療データプラットフォームのメディカルチェーン
  • 国連、難民・ホームレス等向けIDサービス

最後に、第三の領域であるハイブリッド領域は、金融×非金融、つまり暗号資産を非金融領域での課題解決へと応用している領域で、乱暴に言えば、「実ビジネスに仮想通貨決済を導入させたい領域」とも言えるでしょう。

いわゆる「トークンエコノミー」もこの領域に含んで考えるとわかりやすく、今後のブロックチェーン応用が期待されている領域です。

ブロックチェーンの今後(AIとIoT)

出典:Pexels

ブロックチェーンの今後を考える上で外せないのが、DX(デジタルトランスフォーメーション)という考え方と、その前提条件となるIoT、AIという2つの概念です。

DXとは、「ITの浸透が、人々の生活をあらゆる面でより良い方向に変化させる」という概念を指し、ブロックチェーンの活用方法として最も期待されていることでもあります。

DXは、ビッグデータの活用を前提としています。

そして、IoT、ブロックチェーン、AIという3つの概念は、この「ビッグデータ活用を前提としたDX」というより大きな社会動向の要素として、下記のように相互に関連づけることができます。

  1. ビッグデータを集める → IoTによるハードウェア端末でのデータ収集
  2. ビッグデータを保存・管理する → ブロックチェーンによるデータベースの統合・管理
  3. ビッグデータを分析する → AI(機械学習)による大量情報の処理
  4. ビッグデータを活用する(社会実装する)

このように、今後のブロックチェーンは、ビッグデータを利用したDXというより大きな枠組みのもと、IoTやAIといった相互補完技術と協働しながら、これまで活用されてこなかった大量のデータを分析するためのデータ基盤として利用が進んでいくでしょう。

そして、その結果として、ブロックチェーンは、産業や社会全体の仕組みを大きく変え、効率化し、私たちの生活をより豊かにする可能性を秘めています。

ブロックチェーンの課題

ブロックチェーンには、その社会普及の壁となる以下3つの課題を抱えています。

  • スケーラビリティ
  • ファイナリティ
  • セキュリティ

この中でも、特に重要かつ深刻なのが、スケーラビリティの問題です。スケーラビリティとは「トランザクションの処理量の拡張性」つまり、どれだけ多くの取引記録を同時に処理できるかの限界値のことを指します。

ブロックチェーンには、未処理のトランザクションが待機しておくメモプールという空間が存在します。処理するトランザクションが増えて記録可能な取引の上限を超過してしまうと、メモプールに大量のトランザクションが留まってしまいます。こうなると、次回以降のブロック生成時まで放置されて取引が完了しなくなるという問題があります。

また、マイナーと呼ばれるトランザクションの承認者は、ガス代(手数料)という経済的なインセンティブによって動いているので、手数料が多いものから処理を行います。すると、自らの取引を優先的にブロックに記録させるために相場より多くの手数料を支払うユーザーが現れ、手数料のインフレが起きてしまうという副次的な弊害もあります。

ブロックチェーンはトランザクションを承認して分散的に保有するという仕組み上、従来のデータベースよりもスケーラビリティが低くならざるを得ないという課題を抱えています。

一般に、スケーラビリティは「tps(transaction per second、1秒あたりのトランザクション処理量)」で定義することができますが、実際に、代表的なブロックチェーンネットワークは、次のように不十分なスケーラビリティだと言われています。

一般的なクレジットカード: 数万tps

ビットコイン(PoWコンセンサスアルゴリズム): 3~7tps

イーサリアム(PoSコンセンサスアルゴリズム): 15~25tps

コンソーシアム型ブロックチェーンネットワーク(PoAコンセンサスアルゴリズム): 数千tps

このようにブロックチェーンは、オープンで分散的なデータベースとして期待を集めている一方で、ネットワーク参加者が増えるとスケーラビリティが担保できなくなるという課題を抱えています。

この課題に対しては様々なアプローチが試みられています。最も安直な最善策は、メインチェーンのブロック容量と生成スピードの制約を緩和させることです。

このアプローチでは、ブロックの容量を増やしたり、生成までの間隔を短縮することで、一回のトランザクションで処理できるデータ量を増加させて待機のトランザクションを減らすことができます。

しかし、これによってブロックチェーン本来の分散性が低下する可能性や、システム自体の安定性やセキュリティに影響を及ぼす可能性もあります。

また、金融領域では、「ライトニングネットワーク(Lightning Network)」という新しい概念に注目が集まっています。

ライトニングネットワークは、小規模ながら高頻度で行われる取引をオフチェーン(ブロックチェーンの外部)で処理し、最初と最後の取引だけをブロックチェーンに反映させる方法です。

最初の取引でビットコインを送金し、その金額内で自由に送金ができるため、ブロックチェーンのように途中の取引も全て検証する必要がなく、中間の処理を省くことでトレーサビリティ問題に対応しています。

このようなアプローチにより、決済の迅速化や高いトランザクション容量の実現が期待されています。たとえば、大手暗号資産取引所のバイナンスはビットコインの取引をライトニングネットワークで実行できるようになったと発表しています。

Binance Completes Integration of Bitcoin (BTC) on Lightning Network, Opens Deposits and Withdrawals

しかし、非金融領域においてはいまだ効果的な解決策は確立していません。

こうした原理的な課題は、ブロックチェーンが社会基盤となれるかどうかを左右する、重要な論点だと言えるでしょう。

まとめ

この記事では、ブロックチェーンについての仕組みとその周辺知識についてまとめました。

技術進化の一翼を担うブロックチェーンは、現在、様々なビジネスに影響を与えています。今後もさらなる革新が期待され、私たちの日常生活や産業構造に新たな可能性をもたらすことでしょう。